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We study generalized symmetry transformations which involve nonassociative 
and noncommutative parameters. The structure underlying the group gradings is 
determined and examples are given. Graded algebras beyond Grassmann algebras 
are also presented. Nontrivial examples relevant for gmdexl extensions beyond 
supersymmetry are given which resemble several features of quarks and might 
lead to a connection between the external and internal symmetries of the 
phenomenological models. Lie groups of transformations involving nonas- 
sociative and noncommutative parameters are obtained together with their 
corresponding graded Lie algebraic structures. 

1. INTRODUCTION 

The aim of this paper is to provide a structure that allows us to extend 
the concept of continuous symmetries. 

The no-go theorems of  Coleman and Mandula (1967) and of Haag et 

al. (1975) have established the more general symmetry of the S-matrix in a 
quantum field theory model using respectively a group and a supergroup 
structure. The grading structure underlying the Poincar~ algebra and its possi- 
ble graded extensions have been determined in Wills-Toro (1995). These 
results open the possibility of  gradings beyond supersymmetry whose parame- 
ters obey generalized commutation relations (q-commutativity) and are asso- 
ciative (Wills-Toro, 1994a, b). There, the each-other commuting space-time 
parameters can have unexpected generalized commutation relations with 
further generalized Grassmann parameters. This novel nontrivial behavior of 
the space-time parameters was not envisaged when studying the most general 
form of the quantization relations between quantum fields (Klein, 1938; 
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Ltlders, 1958; Kinoshita, 1958) and the corresponding connection between 
spin and statistics (Pauli, 1940; Araki 1961). The so-called Klein transforma- 
tions (Klein, 1938; Araki, 1961) and further equivalences among graded Lie 
algebras should be further developed (Rittenberg and Wyler, 1978; Scheunert, 
1979, 1983a, b), in order to determine to which extent such extensions are 
truly inequivalent to the supersymmetric ones. 

The novel gradings open an unexpected possibility that we introduce in 
this paper: Symmetry transformations whose parameters are noncommutative 
and nonassociative. We will show that this possibility is actually not present 
for supergradings. We also show that these structures can be consistently 
realized for parameter algebras using the gradings suitable for extending the 
Poincar6 algebra. These graded parameters resemble several features of the 
quark phenomenology and provides an alternative line of development to 
previous studies relating para-statistic and global gauge groups (Ohnuki and 
Kamefuchi, 1968, 1969, Drtihl et al., 1970). In the graded Lie algebraic 
counterpart, the novel extensions might offer further layers of generators that 
can produce, for instance, susy generators through the iterated Lie products 
of three generators, in analogous fashion as we produce translations through 
the Lie product of two susy generators. 

2. SYMMETRY GROUPS AND GENERATOR ALGEBRAS 

The most fundamental description of nature seems to be related to the 
characterization of its building blocks in terms of its (exact, approximated, 
broken, global, local, internal, and external) symmetries. The mathematical 
structure underlying the set and composition of symmetry transformations is 
the concept of group of transformations. Regarding the countability of its 
elements, we recognize two main classes: the discrete and continuous group 
of transformations. Every continuous group of transformations turns out to 
be isomorphic to the product of a discrete and a Lie group. The Lie group 
is the connected component which contains the identity transformation. Every 
element g~ of the Lie group can be realized as the exponential of a linear 
combination of linearly independent generators Gj, j = 1 . . . .  , N, through 
commutative parameters (numbers) a J; j = 1 . . . . .  N: 

g a = g ( a  I . . . . .  a N ) =exp{iaJGj} (2.1) 

The generators build a Lie algebra ~ = gen{Gt . . . . .  GN} with a Lie 
product [.,-] fulfilling for every X, Y, Z ~ s~: closure IX, Y] ~ ~ ,  linearity 
[X + Y, Z] = [X, Z] + [Y, Z], antisymmetry [X, Y] = -[Y, X], and Jacobi 
associativity (derivative rule) IX, [Y, Z]] = [[X, Y], Z] + [Y, [X, Z]]. 
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Supergroups offered a further extension of the concept of symmetry 
transformations in which Grassmann orfermionic parameters 01 . . . . .  0 ~ are 
introduced besides the commutative or bosonic parameters ot 1 . . . . .  aN: 

g~,o = exp{iodGj + iO~Qa} (2.2) 

The generators Qa possess fermionic character and the monomials 0aQ~ 
(no summation) and etJGj (no summation) span a Lie algebra. Accordingly, 
the parameter 0 a "compensates" the fermionic character of Qa. We are looking 
for symmetry transformations of the form 

g~ = exp{il3~ ) (2.3) 

which involve parameters 13~)a with generalized commutative and associative 
behavior, and generators Qa ~ which constitute a generalized Lie algebraic 
structure. The monomials 13~_~Q~ ~ (no summation) span a Lie algebra. 

In theoretical physics, several unwritten conventions fix the behavior 
of the parameters involved. For instance, the addition of a fermionic with a 
bosonic parameter is not allowed. This rule is motivated by the spin-statistics 
theorem and covariance requirements (integer-spin representations are used 
for bosonic operators--or fields--and half-odd representations are used for 
fermionic operators). The addition of a fermionic with a bosonic parameter 
or operator would lead to noncovariant expressions. We will consider now 
structures in which the addition is restricted to objects with identical commuta- 
tive and associative behavior since such a constraint seems to be well moti- 
vated in models for mathematical physics. This constraint corresponds to the 
adoption of some superselection rules from the very start, but this leads to 
wider structures for the sets of parameters and generator algebras, although 
it might appear paradoxical. 

3. I-GRADED, q-COMMUTATIVE, AND r-ASSOCIATIVE 
PARAMETERS 

We will address now a generalization of the concept of number fields 
in which the elements are called parameters. The generalization of the real 
field that leads to the complex, quaternion, octonion, and Cayley numbers 
abandons sequentially the linear order field, then commutativity, then associa- 
tivity, and then the division-ring property. This construction maintains the 
addition between any two numbers. This line of generalization disregards 
the mentioned fact: In several applications, the addition can be meaningfully 
restricted to objects with analogous commutative and associative behavior. 
We will consider a particular generalization of the concept of Grassmann 
parameters in which each parameters has a tilded index that determines its 
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behavior under addition, product, permutation of  factors, and alteration o f  
parenthesis. Each parameter, say 13, has associated one tilded index, say a. 
In order to recognize immediately the index associated to the parameter 13, 
we can write explicitly [3a. In several physical applications the usage of 
certain letters or alphabet is reserved to certain parameters, but this procedure 
is rather unsustainable once there are more than three types of parameters. 

We consider parameters 13a, [3", [3" . . . .  whose products are I-graded, q- 
commutative, and r-associative: 

(13a[3~) has index a + ~ (3.1) 

([3a[3'~) = qa,~([3"13a), where qa,~ E K\{0} (3.2) 

(13a(13"13~)) = ra,~,c~((Ba13'~)13~), where ra, e,e E K\{0} (3.3) 

The set K is a given numeric field (R, C . . . .  ) and + is an internal 
operation in the set of  indices I. We shall avoid the outermost parenthesis in 
a parameter monomial. 

There are, of  course, wider generalizations in which, for instance, the 
interchange of the position of  factors or the alteration of parenthesis introduces 
a linear combination of products of parameters. Such cases are beyond the 
scope of this study. We determine now which could be the properties of  the 
parameters, of the index set I, of  the numerical field K, and of the q- and r- 
factors that might lead to a nontrivial realization of the set of parameters. 
We assume first that the elements of K~{0} do not contribute to the tilded 
index of  a monomial, i.e., 

(Y13a has tilded index a) for all y E K\{0} (3.4) 

Accordingly, we can consider that every element of K\{0} carries an 
additive neutral index 5 E I: 

(y  has index ~) for all y ~ K\{0} (3.5) 

( a + o = t ~ + a = t ~ )  for all a ~ I  (3.6) 

Since the numerical factors in IG{0} do not contribute to the q- and r- 
factors, we adopt 

(qa,~ = qa, a = 1) for all ti ~ I 

(ra, e,~ = ra,~,e = ro, a,e = 1) for all a, ~ e I 

(3.7) 

(3.8) 

(l[3a = [3al = 13a) (3.9) 

the properties (3.1) and (3.2) we conclude that (13a13") = From 
qn,~(13'~13a) has index 0 + (~ + a) = (~ + ti). Hence, a + ~ and ~ + a are 
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identical. Analogously, from property (3.3) it follows that the addition of the 
indices is associative. So we can write 

( a + ~ = ~ + t i )  for all a , ~  ~ I (3.10) 

( a + ( ~ + c ' ) = ( a + e - ) + c ' )  for all a , ~ , ? ~  I (3.11) 

In order to obtain compounds parameter-by-generator of  the form [3-aQa 
which produce trivial q- and r-factors (since they constitute a Lie algebra), 
we require the existence of additive inverses in I: 

for all a ~ I 3 - a e  I ( a +  - a = 6 )  (3.12) 

From the properties (3.1), (3.6), (3.10), (3.11), and (3.12) we conclude 
that the set I with its addition operation + builds an abelian group structure. 
From the properties (3.2) and (3.3) we conclude that the left and right 
multiplicative inverses of the q- and r-factors are identical. We can there- 
fore assume 

K is a commutative field (3.13) 

From the reiterated usage of the property (3.2), we conclude 

(qe, a = (qa, e) - l  or 13a~" = 0) for all ~, ~ ~ I (3.14) 

From the property (3.2) we conclude as well 

(qa, a = 1 or (SalSa = 0) for all a ~ I (3.15) 

The latter result is the cornerstone of the definition of Grassmann parame- 
ters. Instead of requiring qa, a = 1,_ will be considered the existence of nilpo- 
tent parameters. 

At the level of cubic monomials of parameters, we obtain different 
equations, depending on the way we use the r-associativity and q- 
commutativity: 

' " qa, e+~(~fSe)~3 a (3.16) 
= , , ,  

13a-(13 13 ) = - I  , , ,  ra,~,eqa,~r~,a,~qa,~r~,e ,a( f3~)f3a (3.17) 

1 It  I If 
fSa(fS,fSe) = ra, e ,~qa+, , eqa , , r e , , , aqe ,~ (~e~e )~a  (3.18) 

These equations provide a consistency requirement for cubic monomials: 

(qa, ~+ e - 1 ~__ = ra, e, eqa,~r~,a, eqa, er~,e,a ra, e, eqa+~,eqa,  ere, e, aqe~e 

or 13a-(13~13~) = 0) for all a, ~, e e I (3.19) 
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The r-associativity in quartic monomials leads to a further set of 
equations: 

t t t  Ptt ! ?f t i t  
( [ 3 a ~ , ) ( ~ d 3 a )  = (3.20) ra+e, e, a ( (~a~)[3e)~3a 

( 1 3 . 1 ~ ; ) ( 1 3 ~ 1 3 # )  = - i  , ,, ,,, r a,,.e+ar,,mara,,+e, ara,, ,e((f3af3.)~e)f3a (3.21) 

These equations provide a consistency condition for quartic monomials: 
- 1  - 1  

( r  a+~.e, ara,~,e+ara,~+e, ar~,e, ara,~, e = 1 

or (13a[3")(13~13~') = 0) for all a, e, ~, a ~ I (3.22) 

A further condition for quartic monomials can be obtained from the 
equations 

( 1 3 - ~ ) ( 1 3 ' - ~ - q ~ )  = - ~  ' ' r_~ - a  a r - e - a  a , ~ - ~ - a ) ( ' q a ' q ~ )  

= ( 1 3 % ~ ) ( 1 3 - ~ - q ~ )  = - t  , , r - a , - e ,  er -a-~ ,e ,  aq-a , -~q~,a- ( f3 -dS-a) ("qdq~)  (3.23) 

These equations provide a consistency condition for quartic monomials: 
- 1  - 1  ( r_~ ,_a ,  ar_~-a,a,~r_a,_~,~r_a_e,e ,  aq_a,_~q~,  a = 1 

or (13-a'qa)(13'-e'q~) = 0) for all a, ~ e I (3.24) 

We obtain, finally, some equations for monomials of order six: 
l l t l  f l  ([3_~n~)( (f3_,n,)(f3_e~q~) ) 

- -  1 - 1 t t  r t I t  
= r - e , - e ,  e r - e - e , ~ , e r - e - e , - a ,  ar -a -e -e ,a ,e+~([3-e[3-e ) [$ -a) ( 'qa( 'qe 'qe ) )  

= ((13-.m.,)([3",'q'))(13"e'q~) 
= --1 - 1  - 1  

r r r e + r  + r r - ~ , - d , a  - ~ - a , a , #  - , - @ - a , ~  a ~ / - a - e , ~  a ,c  - s  a ,#,e  

• ( ( ~ " e ~ ' . ) l ~ - ~ ) ( ~ A ~ ; ~ ) )  

= (13_,-q,)((13_dq,)([3-e'q~)) 
- 1  - 1  - 1  - 1  

= r - e , - - ,  a a  r - - e -a ,a , e  r - e - a , - ~ , ~  r - a - ~ - e , e , a  + r e - e , - a , - ~  r - e , - m - a  r~,a,e r a,~,e 

• q - a , - e q e ,  a((f3'-e~'~)f3_a)(Xla(Xl'gq'~)) (3.25) 

These equations provide the consistency requirement 
- 1  - 1  

( r  -e,  - ~ . e r - ~ - e , ~ , e r - ~ - e , - a ,  a r -~ -e -a .a ,~+er -~ .  -a ,a  

X -~ -~ -1 r -~-a ,a ,~r -e ,  - ~ - m  ~+ a r - e - ~ - a , a +  ~,er-e, -~, -ara,~,e 

= r - I  - 1 , - m e r - e - e , e ,  e r - e - e ,  -a,  a r - e - e -a ,a ,~+e  

- 1  
X r_m_mar_a_e ,a ,  er_a_m_@, ~ 

- 1  - 1  - 1  
• r_a_e_~,e ,a+er_e_a ,_~r_m_~,_ar~ ,a ,  era,~,eq_a,_eqe,  a = 1 

or (13-#qa)((13"~'q~)(13"e'q~)) = 0) for all a, ~, 6 e I (3.26) 
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We observe that for each monomial order there exists a set of  independent 
constraints whose classification is very involved. Furthermore, the determina- 
tion of the independent constraints up to a given monomial order is a highly 
nontrivial question (Groebner basis problem). 

Finally, we construct a graded Lie algebraic structure such that the 
compounds ~-aQa span a Lie algebra. We require thus closure, linearity, 
antisymmetry, and Jacobi associativity among them. We assume first a com- 
mutator of the form 

[(~-aQa), (13'-eQ')] = (~-aQa)(~'~Q~) - (f$'-eQ'~)(~-aQa) (3.27) 

In order to obtain a closed structured among the generators Qa, Q'a . . . . .  
we will find that it is sufficient to impose the conditions on the q- and r- 
factors stated in the requirements (3.24) and (3.26). 

The resulting algebraic structure L built up by the generators Q, Q ' , . . .  
is called an (I; q, r)-graded Lie algebra over K. The addition in L is only 
defined between elements with identical index, and the product ~., .] in L 
fulfills for all Xa, Ye, Ze, X~ E L: Closure and I-grading: q Ua+e ~ L (~Xa, 
Y~] = Ua+e); Linearity: ~Xa, + X~, Ye] = ~Xa, Ye] + ~X~, Y~,]; q-antisymmetry: 
~Xa, Ye] = -qa.e[Ye, Xa]; (q, r)-Jacobi associativity: 

We observe that in consonance with our comments in Section 1, the 
addition in L is only defined among elements carrying identical tilded indices. 

There is a further set of requirements (to be explained below) in order 
to complete sufficient conditions to demonstrate consistency of the monomial 
of parameters to all orders: there should exist an application R such that (for 
appropriate and fixed choices of the phases in the roots): 

q "1/2" o = "1/2" a,e ,,a,e qa, eqe, a R~,a (3.28) 

q"l/2"o ,,"1/2" Re e = " , ,~"1 /2"  o ,,"1/2" ~, (3.29) a,e+c~,a,e+e,t~,e , , a,e,e~ta, e ,,a,e~ta+e,e,,a+e,e 

We consider finally the basic requirements for the existence of an involu- 
tion operation for the parameters. This allows for the definition of unitary 
group transformations of the form (2.3). The involution plays a central role 
for supersymmetric extensions since it leads  to the existence of an energy 
ground state. The involution operation (.) for parameters fulfills 

(~a) = ~ a * ,  (~a*) = ~a (3.30) 

(kl3al3") = k*(13")(13a) = k*13~*13a* (3.31) 
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Hence, there should exist involutions (.)* and (-)* in I and K, respec- 
tively, such that 

((a)* = a*, (a~) * = a) for all a ~ I (3.32) 

((k)* = k*, (k*)* = k) for all k ~ K (3.33) 

The consistency between the involutions ~7~, (.)* and (.)*, and the q-commuta- 
tivity and r-associativity leads to the requirements 

(whether qa*.~* = . -1 (qa,~) or 13a13~ = 0) ~/a, ~ ~ I (3.34) 

(whether re*,~*,a* = (r*,~.e) -I or 13a([~13~) = 0) Va, ~, ~ E I (3.35) 

4. ABELIAN GROUP GRADINGS OVER A COMMUTATIVE 
FIELD 

We have discussed in the previous section a series of requirements that 
lead to generalized structures that might enhance the concept o f  symmetry. 
Several requirements refer to constraints to the q- and r-factors or to the 
product of parameters itself. Our aim is to arrive at a generalization of the 
concept of group grading and Grassmann parameters. Thus, we will allow 
for indices such that qa,a q: 1 as long as their parameters are nilpotent: f~af3 a = 
0. We do not want any further reference to particular properties of the 
parameters, so we will constrain the further requirements only to the q- 
and r-factors. We determine some structures which will provide sufficient 
conditions for having gradings with respect to abelian groups. 

Definit ion.  We call (I; q, r) a group  grading  over  K o f  order  N,  with 
N --> 3, iff K is a commutative field, {I; + } is an abelian group, 6 the neutral 
element of I; and q and r are applications 

q: I • I--> K\{0} ; (a, e0 ~ q(& ~) =:  qa, e (4.1) 

r: I • I • I ~ K\{0} ; (a, ~, cO ~ r (a ,  ~, e) =: ra,,,e (4.2) 

fulfilling the following requirements for all a, ~, e in I: 

qe, aqa,~ = 1 (4.3) 

qa, a = 1 (4.4) 

ra, e,a = ra, a,~ = r~,a,~ = 1 (4.5) 

and the q- and r-coefficients fulfill all the consistency requirements obtained 
for parameter monomials up to order N, with the only exception of the 
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consistency requirement (3.15), which will be fulfilled by requiring qa,n 
1 ~ f~a~a = O. 

Accordingly, the group gradings of order N --> 3 will fulfill the require- 
ments on q and r in (3.19): 

- 1  - 1  - 1  
qa,~+eqa,~qa, e = ra,~,er~,a, er~,e.a (4.6) 

- 1  - 1  - 1  
qa,~+eqa,~qe,~qa+~,e = ra,~,ere,~,a (4.7) 

The group gradings of order N :> 4 will additionally fulfill the requirements 
for the q- and r-factors given in (3.22) and (3.24), among others. The group 
gradings of order N ----- 6 will additionally fulfill the requirements for the q- 
and r-factors given in (3.26), among others. 

The group grading of order N assures the consistency requirements for 
monomials up to order N. In order to provide a structure that allows for the 
definition of (I; q, r)-graded Lie algebras, we have already indicated that 
consistency requirements for monomials of order 6 have to be fulfilled. The 
aim is now the definition of a structure that provides consistency to the 
parameter monomials of a r b i t r a r y  order :  

De f in i t i on .  We call (I; q, r) an in t e rac t i ve  g r o u p  g r a d i n g  o v e r  K iff K 
is a commutative field. {K; + } is an abelian group, 0 the additive neutral 
element of I; and there is an application R such that the q, r, and R applications 

q: I • I--> KX{0}; 

r: I • I X I ---> KX{0}; 

R: I • I ----> KX{0}; 

fulfill the following requirements 
fixed choices of the phases in the 

q~,aqa,~ 

qa, o 

ra,~,o = ra, a,~ = ro, a,~ 

q,,tlz- R 

q" l /2"  D X q / 2 " o  
a,~+ei,a,e+e,te, e , ,e,e 

(a, e0 ~ q(a, e0 =:  qa,~ (4.8) 

(a, ~, cO ~ r(a, ~, cO =:  ra,~,e (4.9) 

(a, e-) ,-. R(a, e0 =: Ra, e (4.10) 

for all & ~, 6 in I (,and for adequate and 
roots): 

= 1 ( 4 . 1 1 )  

= 1 (4.12) 

= 1 ( 4 . 1 3 )  

= qa,,~q'~:~2"Re, a (4.14) 

"1/2 . . . .  l iT'  = ra,~,eqa,~ Ra,~qa+~,eRa+u (4.15) 

We wil l  show that the latter are exactly the requirements for having 
consistency for parameter monomials of arbitrary order (i.e., when N ---> oo), 
as well as sufficient requirements for a closed graded Lie algebraic structure. 
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We introduce some useful adjectives for the defined group gradings over 
K for which particular properties are required: 

D e f i n i t i o n .  A group grading (I; q, r) over K is called: 

�9 f a i t h f u l  iff 

for a l l ~ , E ~  I, t~=/:~ 36, fi ~ I ( q a , ~ 4 = q ~ , e o r  

ra, e,a ~ ra, e,a or re, a,a ~ re, a,a or re, a,a 4= re, a,a) 

�9 s e p a r a t e d  iff the q-application fulfills 

for all ~, E, 6 ~ I (qa, a+e = qa, aqa, e) 

�9 a s s o c i a t i v e  iff the r-application is constant: 

(4.16) 

(4.17) 

for all ~, ~, 6 E I (ra, a,e = 1) (4.18) 

�9 c o m m u t a t i v e  iff the q-application is constant: 

for all ~, E E I (qa, a = 1) (4.19) 

�9 t r i v ia l  iff it is commutative and associative 
�9 w i t h  i n v o l u t i o n  iff there exist involutions (.)* and (-)* in I and IC 

respectively, such that for all ~ & 6 in I 

qa*,~* = (qa*,~) -l  (4.20) 

re*,~*,a* = (r~,e,e) - l  (4.21) 

�9 e x t e n d i n g  g r o u p  g r a d i n g  o v e r  K o f  (I'; q',  r ')  iff (I'; q',  r ') is a 
trivial group grading over K, (I; q, r) is a faithful iterative group 
grading over K, and 

I' C I, q' = qlr• r' = rll,xi,xr (4.22) 

Observe that every associative and every commutative group grading 
is separated. The separated group gradings of order N > 3 fulfill [see (4.3), 
(4.4), (4.6), (4.7), and (4.17)] 

(qa, e q-la, e - - 1  : ~ ~ = = qa , -a  q - a , - a )  for all a, e E I (4.23) 

(ra,~,~ - l  = re, a,a) for all a, e, c ~ I (4.24) 

(ra,~,ere, a, er~,e,a = 1) for all ~, E, 6 E I (4.25) 

Hence, the interchange of the first and last arguments in the r-factors of 
separated group gradings provides the multiplicative inverse, and the product 
of the r-factors with cycled permuted arguments gives the identity. 
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T a b l e  I .  Z2-Group. 

(+)z~ 0 1 

0 0 1 
i l 0 

We will define now particular group gradings over C. The most elemen- 
tary group grading beyond the trivial group grading is the group grading of 
the Grassmann algebras: 

Definition. We call (7-2; qZ2; rZ2) a supergrading  or  a Gras smann  grad- 
ing over C (or R) iff 

{Z2; +};  7--a = {0, 1} (4.26) 

+:  Za • Zz ---> 7-.2; (ao, eo) ~ (ao + eo) mod 2 (4.27) 

qZ2: Za • Z2 ---> C; (ao, eo) ~ exp{ilraoeo} (4.28) 

rz2: za x z2 • z2 ---> c ;  (ao, eo, co) ~ 1 (4.29) 

The addition and the q z2 applications can be expressed through Tables 
I and II (where the first argument is read from the first column and the second 
from the first line as usual). 

We observe from the Table II that q z2 is a symmetric application. It is 
simple to verify that (Za; q z2, rZ2) is a separated, associative, faithful, iterative 
group grading over C (or R). 

Proposi t ion O. There are no non-associative group gradings for the Z2 
group (4.26)-(4.27) and the q-application (4.28). 

Proof. 0 is the neutral element of Z2. So ro, e,e = ra, o,e = re, e,o = 1 for 
all &~ ~ Za. Hence, the only possible nontrivial r-factor would be rl,l,l- 
Now, the property (4.17) holds for the q-factors in (4.28), so (4.24) and (4.25) 
hold as well. Hence rl,l,l = r~ll, l and rl,l,lrl,l,lrl,l,1 = 1. The only possible 
solution is rl,Ll = 1. �9 

The associative group gradings involving symmetr i c  q-applications qa,~ 
= qe, a = q~,~ imply qa,~ = 1 or qe, e = - 1 .  The commutation relations of 

Table II. qZ2-factors 

qZ2 0 1 

0 1 1 
1 1 - 1  
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quantum fields using such group gradings are shown to be equivalent to 
supergradings (called "normal commutation relations") or replications of 
them by using the so-called Klein transformations (Klein, 1938; Araki, 1961). 
This exploits the existence of superselection rules. 

In order to have more chance to arrive at structures which can be 
"essentially unequivalent" to supergradings, we ask for nonsymmetric q- 
a_p, plications. We recall first some identities of R3-geometry. Let 
ot ~ ,  ~ ,  ~ ~ R 3 and let "." and " •  be the standard scalar and vector 
products of R3-vectors respectively. Then 

~ .  {A X E} = - ~ .  {~ X ~} (4.30) 

�9 { A ' X ( ~ + ~ ) }  = ~ -  {A 'X~} + ~ .  { ~ X ~ }  (4.31) 

We observe that a q-application of the form 

qff],t~] = exp{~ �9 {A X E}} (4.32) 

with ~ or i~ a fixed vector in R 3, will fulfill the requirements (4.3) and 
(4.17)if [A + ~]  = [A] + [7]. The requirement (4.4) is fulfilled adopting 
o = [o1. 

We can add to this construction three different models for the r-factors: 

r (null~ . . . .  1 (4.33) 
B ],[E],[C] 

The choice (4.32) and (4.33) fulfills the equations (4.11)-(4.13), (4.17), and 
fulfills (4.14)-(4.15) for Ra, e := 1. 

A further and less trivial choice of r-application is given by: 

r~])0~],[~] = exp{p �9 {E • (A' • ~)}} (4.34) 

with ~ or i~ a fixed vector in R 3. The choice (4.32) and (4.34) fulfills the equa- 
tions (4.11)-(4.13), (4.17), and fulfills (4.14)-(4.15) for Ra, e := (ra, e-a,e) 113. 

A further choice of r-application is given by 

r~,t~,].t~ ] = exp{k(A' • ~ ) .  {(~ + ~ )  • ~}} (4.35) 

with k or ik a fixed element of R. The choice (4.32) and (4.35) fulfills 
the equations (4.11)-(4.13), (4.17), and fulfills (4.14)-(4.15) for Ra, e := 

a c )  1/4 ( r a ,  e -  ,.~ �9 

These observations lead to the following structure: 

Definition. We call (G, q~, r e) an axial grading over C of null, cubic, 
or quartic type iff: 

�9 {G; +} abelian group. 
�9 The elementsof G ~e  equivalence classes [A], [~] . . . .  of vectors 

in R 3, where [A] + [E] = [A + El. G has neutral element ~ = [~]. 
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�9 The application qC takes the form (4.32), with ~ or i~ a fixed vector 
in R 3. 

�9 The application r C takes for the null, cubic, and qu .artjc type, respec- 
tively, the form (4.33), the form (4.34) (with p or lp a fixed vector 
in R3), and the form (4.35) (with k or ik a fixed number in R). 

�9 The applications q c and r G are well defined, i.e., they are independent 
�9 . - - - r  

of the choice of  class representatwes A, ~ ,  ~ . . . . .  from the classes 
[A], [~], [~] . . . . .  respectively, in the definitions of  qG and r c. 

It is easy to verify that every axial grading over C is a separated iterative 
group grading over C. 

We can combine group gradings over a field K by the following recipe�9 

Definition. We call (I • I '; q I X r ,  rXXr) a direct product group grading 
over K iff (I; qI, r I) and (I'; qr ,  r r)  are both group gradings over K, and 
the applications qlXr and r IxI' are given by 

qlXl '  (a,a'),(~,e) = ~ , ~ ; , e '  (4.36) 

riXi' = I x' (4.37) (a,a,)(e,e')(e,e') ra, e, era',e',e ' 

Definition. The direct products between a supergrading and axial grad- 
ings over C are group gradings over C called single gradings over C. 

Proposition 1. Every super, axial, and single grading over C is a separated 
iterative group grading. This can be easily proved verifying all the properties 
of  separated iterative group gradings. 

We finish this section by determining some remarkable subsets of  the 
grading group I of a group grading (I; q, r) over C. According to the so- 
called "small Fermat theorem," in every finite group {I; + } of  order N(I) 
and neutral element 6 we have ~ + . . .  + a (summation N(I) times) = 6 
for all 6 in I. It is meaningful to consider the following subsets of  the abelian 
group I (either finite or no0: 

I 0t2) = {a �9 I: a + a = O} (4.38) 

I w") = {a �9 I: a + "'" + ti (n times) = 0}, n �9 N (4.39) 

It is easy to verify 

{I(un); + } abelian subgroup of  {I; + } (4.40) 

Since q~a = q2,13, then either qa.a = 1 or qa, a = - 1 .  We can thus divide 
I (1/2) into the two disjoint subsets I (+1/2) and I(-1/2): 

I (-+l/2) = {t$ �9 I: ti + fi = 6 and qa, a = - 1 }  (4.41) 

I (1/2) ---- I (+1/2) kJ 1(-1/2), i(+l/2) f-.] ](-1/2) = 13 (4.42) 
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In the case in which (I; q, r) is a separated group grading we can easily 
see that (4.17) implies 

{I(+lm; + } abelian group when (I; q, r) separated (4,43) 

For (I; q, r) separated we observe also that a ~ I (1/2) implies a = - a  
and thus for all g ~ I (qa, e = q~J). Hence, 

(a e I fl/2) and ~ e I ~ qa, e E { + 1, - 1 }) for all (I; q, r) separated 
(4.44) 

We consider now the following subset of I ~+ u2): 

I (++l/z) = {a ~ I(+lm: V3, ~ E IC+tcZ)(qa.a = 1 and ra.a,e = 1)} 

(4.45) 

The set I (+ + tcz) fulfills 

{i(++lm; + } abelian subgroup of {I; +} for (I; q, r) separated (4.46) 

(](+ + 1/2), qtx~ + + tm2, rlx(+ + I/2)3) trivial group grading over K (4.47) 

Hence, given (I; q, r) a faithful separated iterative group grading, then 
it is an extending group grading of the group grading (4.47). This observation 
is to be exploited for the construction of  the extending group gradings for 
the Lie algebras (WiUs-Toro, 1995). 

5. EXAMPLES OF GROUP GRADINGS OVER C OR R 

We list now several group gradings over C or R which are of interest 
in mathematical physics. 

Example 1. We introduce some definitions toward the construction of 
axial gradings over C: 

{Z4A X Z4A; 

Z4A X Z4n 

(n, m) + (n', m') 

qZ4AXZ4A 
(n,m),(n',m') 

rZ4A• 
(n, m),(n',m'),(n",m") 

+ }; A E N fixed; 6 = (0, 0) (5.1) 

= {(n, m): n, m = 0, 1 . . . . .  4A - 1} (5.2) 

= ((n + n') rood 4A, (m + m') rnod 4A) (5.3) 

= e (i~rl2A)(nm'-mn') (5.4) 

: e ( i~rl2A)(nm'-mn') t(n+n")m'-n'(m+m')]  (5.5) 

(5.6) r (nu||) = 1 
(n, m),(n',m'),(nn,m ") 

We find the following faithful axial iterative group gradings over C: 
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(Z4A • Z4A, qZ4AXZ4A, rZ4A• not associative (5.7) 

(Z4A • Z4A; q zaAxZ4A, r (null)) a s s o c i a t i v e  (5.8) 

T h e  ax ia l  g r a d i n g s  (5.7)  and  (5.8)  are,  r e spec t ive ly ,  o f  quar t i c  and  nu l l  type .  
U s i n g  the de f in i t ions  (4.38),  (4.41),  and  (4.45) ,  w e  ob t a in  

(Z4A • Z4A) (1/2) = (Z4A • Z4A) (++1/2) 

= {(2An,  2Am) :  n, m = 0, l}  ~ Z2 • Z2 (5.9)  

A c c o r d i n g l y ,  the g roup  g rad ings  (5.7)  and  (5.8)  a re  e x t e n d i n g  g r o u p  
g r a d i n g s  o v e r  C o f  the  t r iv ia l  g r o u p  g r a d i n g  o f  Z2 • 7_2. Z2 • Z2 is p r e c i s e l y  
a su i t ab le  g r ad ing  for  the Po incar6  a lgebra ,  and  is a l so  the  set  o f  s p a c e t i m e  
d i s c r e t e  s y m m e t r i e s  LIL ~+, where  L is the  L o r e n t z  g r o u p  and  L ~+ is the  p r o p e r  
o r t h o c h r o n o u s  invar ian t  subg roup  o f  L. 

In  par t icu lar ,  for  A = 1 we  ob ta in  the  g r o u p  g r a d i n g  fo r  Z4 • Z4 w i th  
the  a d d i t i o n  tab le  s h o w n  in Table  III .  T h e  va lue s  o f  the  q Z4• 
are  p r e s e n t e d  in Table  IV. 

Example 2. F r o m  the d i rec t  p r o d u c t  o f  the (Z2; qZ2, rZ2) s u p e r g r a d i n g  
and  the ax ia l  i t e ra t ive  g r o u p  g rad ings  o f  E x a m p l e  1 w e  o b t a i n  the f o l l o w i n g  
fa i th fu l  i t e ra t ive  s ing le  g roup  g r a d i n g s  o v e r  C:  

+ 

(0, 0) = o 
(2, 0) = a 1 
(0, 2) = a 2 
(2, 2) = a 3 

(1,0) = ~o 
(3, 0) = ~l 
(1,2) = ~2 
(3, 2) = ~3 

(0, 1) = 60 
(0, 3) = 6 t 
(2, 3) = 6 2 
(2, l) = 63 

(3, 3) = go 
(1, 1) = ~ 
(1, 3) = g2 
(3, 1) = g3 

Table I lL Addition Table of the Group Z4 • Z4 

O a I a 2 a s go g~ ~2 g3 60 6t e2 ~3 ~o gl ~2 ~3 

6 a I a 2 a 3 ~0 ~l ~2 g3 eo el e2 63 gO gl ~2 g3 
a I a a 3 a 2 gl ~0 ~3 ~2 e3 ca e~ eo ~2 g3 go ~ 

a 3 a 2 a I 6 ~3 ~2 ~l ~0 ~2 ca ~0 ~l ~l ~0 g3 g2 

~0 ~1 ~2 ~3 /~1 ~/~3/,~2 ~l ~2 ,~0 .~3 ~l ~t3 ~2 ~0 
~t ~0 ~3 ~2 6 a I a 2 a 3 g3 ,~0 ,~2 ,.~! 62 eo el 63 
~2 ~3 ~0 ~l a 3 ti 2 a I 6 ~2 gl g3 gO 6 0 62 63 el 
~3 (~2 (7| 1~0 /~2 a3 6 a I ~0 ,~3 ,~1 ,~2 63 el eo (2 

(0 ~3 61 62 .~1 ~3 ,r go a 2 (~/~1 a3 ~1 ~2 ~0 ~3 
el (2 eo e3 ~2 ,~0 ,~1 ,~3 (~/~2 a3 at ~3 ~0 ~2 ~l 

~3 ~0 (2 (l g3 ~1 ,~0 ~2 /~3/~l ~/~2 (0 ~3 ~1 (2 

,fro ,~2 ,.~3 ,.~1 el ~2 eo ~3 ~l ~3 ~2 ~0 /~3 6/~2/~1 

~2 .~0 ~1 ~3 e3 6 0 e2 el ~0 ~2 ~3 ~1 a2 ,~l/~3 6 
g3 ~ ~0 ~2 eo ~3 e~ 62 ~3 ~t go ~2 a ~ a 2 6 a 3 
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qZ4XZ4 

(0, o) = 
(2, o) = a t 
(0, 2) = a 2 
(2, 2) = a 3 

(1, O) = ~o 
(3, 0) = ~1 
(1, 2) = ~2 
(3, 2) = ~3 

(0, 1) = e ~ 
(0, 3) = e I 
(2, 3) = e 2 
(2, 1) = e 3 

(3, 3) = go 
(1, l) = gl 
(I, 3) = ~2 
(3, 1) = ~3 

T a b l e  IV. qZ4XZ4-Factors 

al a2a3 ~0 ~l ~2 ~3 e ~ e' e2 ~3 go ~l g2 ~3 

1 1 1 1  1 1 1 1  1 1 1 1  1 1 1 1  
1 1 1 1 1 1 1 1 - 1 - 1 - 1 - 1  - 1  - 1 - 1 - 1  
1 1 1 1  - 1 - 1 - 1 - 1  1 1 1 1  - 1 - 1 - 1 - 1  
1 1 1 1 - 1 - 1 - 1 - 1  - 1 - 1 - 1 - 1  1 1 1 1 

1 1 - 1 - 1  1 1 - 1 - 1  i - i  - i  i - i  i - i  i 
1 1 - 1 - 1  1 1 - 1 - 1  - i  i i - i  i - i  i - i  
1 1 - 1 - 1  - 1 - 1  1 1 i - i  - i  i i - i  i - i  
1 1 - 1 - 1  - 1 - 1  1 1 - i  i i - i  - i  i - i  i 

1 - 1  1 - 1  - i  i - i  i 1 1 - 1 - 1  i - i  - i  i 
1 - 1  1 - 1  i --i i - i  1 1 - 1 - 1  - i  i i - i  
1 - 1  1 - 1  i - i  i - i  - 1 - 1  1 1 i - i  - i  i 
1 - 1  1 - 1  - i  i - i  i - 1 - 1  1 1 - i  i i - i  

1 - 1 - 1  1 i - i  - i  i - i  i - i  i 1 1 - 1 - 1  
1 - 1 - 1  1 - i  i i - i  i - i  i - i  1 1 - 1 - 1  
1 - 1 - 1  1 i - i  - i  i i - i  i - i  - 1 - 1  1 1 
i - 1 - 1  1 - i  i i - i  - i  i - i  i - 1 - 1  1 1 

( Z  2 X (Z4A X Z4A), qZ2q Z4A• rZ2r Z4A• not associa t ive  

(5.10) 

(Z  2 x (Z4A X Z4A); qZ2qZ4AXZ4a, rZ2r(null))] associa t ive  (5.11) 

We  f ind  as wel l  

( Z  2 X (Z4A X Z4A)) (++1/2) : {0} X (Z4A X Z4A) (++1/2) ~ Z 2 X Z 2 

(5.12) 

Accordingly ,  the g ro u p  g rad ings  (5.10)  and  (5.11) p rov ide  ex t end ing  
group  gradings  over  C o f  the t r iv ia l  g roup  g rad ing  Z2 X Z2. T h e y  prov ide  
(Wil ls -Toro,  1995) ser ious  cand ida t e s  for  the  g raded  ex tens ions  o f  the Po inc -  
ard a lgebra  (special  re la t iv i ty)  b e y o n d  supe r symmet ry .  

6. G R O U P  G R A D E D  A L G E B R A S  

In  the prev ious  sec t ions ,  we  have  a r t icu la ted  the  g roup  grad ing  s tructures  
wh ich  fulfi l l  several  c o n d i t i o n s  su i t ab le  for the de f in i t i on  of  I -graded ,  q-  
commuta t ive ,  and  r -assoc ia t ive  parameters .  Never the less ,  the r equ i r emen t s  

explored  on ly  cons i s t ency  c o n d i t i o n s  u p  to p a r am e te r  m o n o m i a l s  o f  order  
six. We are no t  sure so far i f  fur ther  i n d e p e n d e n t  cond i t i ons  shall  be  necessa ry  
for the cons i s tency  of  m o n o m i a l s  o f  arbi t rary  order. We  wi l l  de t e rmine  suffi-  
c ien t  condi t ions  for such cons i s t ency .  
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We define graded algebras instead of plain algebras since the addition 
operation is not defined for the whole algebra. The addition operation is 
defined only in certain subsets. 

Definition. We call {P; +,  e, .} an (I; q, r)-graded algebra over K iff 
P ~ {0} is a set whose elements are called parameters, 0 ~ P, and (I; q, r) 
is a group grading over K fulfilling the following three axioms: 

Axiom 1. There is an application St that assigns an element (tilded index) 
of I to each element of P\{0}. The abelian group I is generated by the image 
of P\{0} under St. The set of  Pa of preimages for each a ~ I with the null 
element 0 constitutes a vector space over K: 

St: P\{O} ---> I, ~a '-' S,(fAa) = a (6.1) 

I is generated by St(P\{O}), (6.2) 

Pa = {0} O Stl(a), a E I (6.3) 

{P a; + , "  } vector space over K, a ~ I (6.4) 

P = 13 Pa :# {0} (6.5) 
ae I  

Axiom 2. The set P with its product "e"  of  parameters builds a closed 
I-graded, q-commutative, and r-associative structure, i.e., for all 13a, 13", 13~ 

P: 

p x p - ,  p;  (13~, 13;) ,-. 13~13; e P 

Pa �9 P~ C Pa+~, ~, ~ ~ I 

f3a~'~ = qa, ef3'~[~e 

I 1r I 11 ~a(~,~Ae) = ra.,.e(~a[~e)[3e 

(closure) (6.6) 

(I-grading) (6.7) 

(q-commutativity) (6 .8)  

(r-associativity) (6.9) 

Axiom 3. The product operation oI parameters is bilinear with respect 
to the operations (addition and product by a scalar of K) defined in each 
vector space Pa, a e I, i.e., for all 13e, 13~, 13~ ~ P, and for all y E K, 

(13a + yl3~)13~ = [~a13~ + Y13~13~ (6.10) 

13~(13a + y[3~) = 13~13a + yl3~13~ (bilinearity) (6.11) 

We could consider additionally the existence of  an involution operation 
in P. This leads to the further definition: 

Definition. We call {P; +,  e, .} an (I; q, r)-graded algebra over K with 
involution (-) iff additionally (I; q, r) is a group grading over K with involution, 
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and the involutions (---5, (.)*, (-)* in P, I, K, respectively, fulfill for all 13a, 
135 e P a n d y  e K 

('~ : P "--) P, Y~ 3a ~ Y*'~a* (6.12) 

(y*f3a*) = Yf~a, (yf~af3~) = Y*-~'a*'~a* (6.13) 

Definition. We call {P; + ,  �9  �9 }, respectively, an iterative, a separated, 
a faithful, an associative, a commutative, a trivial, a super, an axial, a single 
(I; q, r)-graded algebra over K iff (I; q, r) is, respectively, an iterative, a 
separated, a faithful, an associative, a commutat ive,  a trivial, a super, an 
axial, a single group grading over K. 

Definition. We call {pt • p/ ;  + ,  e ,  .} a direct product (I 1 • I/; 
I 1 12 I 1 12 q q , r r )-graded algebra over K .lff 

(i) {Pi; + ,  �9  .} is an (I"; qV, ri ,)_graded algebra over K, i = 1, 2. 
(ii) (P • I2; qpqi2, rI~rX2) is the direct product group grading between 

(ii; qd, r Il) and (I~; q~Z, r~). 
(iii) The operations + ,  � 9  in {P~ • P~; + ,  �9  �9 } are the naive extensions 

of the operations in pt  • p2: 

St((f3 l~, 13~)) = (ti l, a 2) ~ I t X 12 (6.14) 

(13~a,, 13~) + (13],, ~/~2) = (13~,, 13aZ-2 + "y~) (6.15) 

(13a~,, 13aZ-Z) + (~al', [3aZZ) = (13~a' + ~/ah, 13~z) (6.16) 

,~,a ,-e, [3aZ-Z~) (6.17) 

K([3~., [3a22) = (K[3~', [3~2) = ([3~', KI3~) (6.18) 

Accordingly, 

([3a h, [3~2) �9 ( ~ ' ,  8~) = qI~a'q~a~ea(8~', ~ )  �9 ( ~ ,  [3~) (6.19) 

(1~'~,, ~ )  �9 ((~'~,, ~e ~) �9 (@, @)) 
= rla[~,.e, rIa~e~,ez((~3ta~ ' [322) �9 (~1,, ~e2.2)) �9 (0~, 0~) (6.20) 

7. BASES A N D  M U L T I P L I C A T I O N  C O N S T A N T S  F O R  G R O U P  
G R A D E D  A L G E B R A S  

Every Pa, a ~ I, of  an (I; q, r)-graded algebra over K is a vector space. So, 
we can adopt for each Pa q: {0} a maximal set of  linearly independent vectors: 
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{r = {eia; i = 1 . . . . .  dim Pn}, Hamel basis of Pa ~ {0} 

(7.1) 

According to the I-graded property (6.7), we have 
dim Pa+~ 

Pg/+ca ~ F'ia~-j~ X Vk'a'+~'" = ,,ka.+e~, - (7.2) AtdJ~ ~Ka+p. Ai~z/~ '~d+e 
k=l  

where we adopt as a convention that the summation runs only over nontilded 
repeated indices. The K-valued coefficients XiajeKa+e will determine the product 
�9 among arbitrary elements of P in terms of the adopted bases (7.1). The 
equations (7.2) are called the multiplication table, and the K-valued 
coefficients v,,a+~ ,,i~ are called the multiplication constants of P under the chosen 
bases. In terms of the multiplication constants, the q-commutativity and r- 
associativity imply 

• . . . .  k n : ~  (q-commutativity) (7.3) iaJ# tta, ~A j$id 

xfz~+~+ev le§ . . . .  raa+~vfa+e§ (r-associativity) (7.4) ta~e+e AJdce "a,~,eAie3~ Area+eli e 

Observe that the q-commutativity and r-associativity imply the existence 
of the following constant applications, which we call q-commutator and r- 
assocMtor, respectively (They might be useful for defining the (I; q, r)- 
graded algebra as the quotient of the nonassociative graded algebra by the 
minimal ideals containing the q-commutators and r-associators): 

~', "D: P x p -~  { 0 }  

( ~ ,  [~;) 

p X P •  

( ~ ,  8;,  ~ )  

~. [g~, ~;] :=  g ~ ;  - q ~ , , g ; g .  = 0 

--> {0} 

(7.5) 

I II 
:=  13~(13A3~) - ' " = 0 ra.e,A[~afJ~)fJe (7.6) 

' ,  ~ ~ "_ 

8. CONSISTENCY OF (I; q, r)-GRADED ALGEBRAS 

We discuss now the consistency of the (I; q, 0-graded parameter algebras 
over K and provide a consistency property for group gradings. We demonstrate 
first that every monomial (chain) of parameters built up through binary 
products �9 whose factors are clearly delimited by parentheses has a unique 
result when certain conditions are given. 

Definition. An (I q, 0-graded algebra is called consistent iff every 
parameter monomial built up through binary products �9 is invariant under 
the q-commutation of factors and r-associative reordering of parentheses. 
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Proposition 2. The result of a monomial of parameters built up through 
binary products �9 whose factors are delimited by parameters is unique if the 
q-commutativity condition (7.3) and the r-associativity condition (7.4) are 
fulfilled. Hence, every (I; q, r)-graded algebra is consistent. 

Proof. We span each parameter 13a involved in the monomial in the 
terms of the Hamel basis {~/~} of Pa: 13a = cir Then we can use recursively 
the bilinearity of the �9 products and the multiplication table (7.2) to transform 
every product of the form [~a[~ into 

�9 " " i ' J j v k a ' + ~ F , -  ( 8 . 1 )  

Now, each transformation which is done in the calculation using the q- 
commutativity provides, according to equation (7.3), 

~ a ~  "~ qa ,  e ' ~ [ ~ a  : t " ' J r i "  , , k a §  -~ r i t " J ~ ' k . a . + ~  (8.2) v ~ "la,~Aj~ia ~ka+~ ~ ~ A4al~ ~ka+~ 

Hence, the usage of such reordering of factors at any stage of the calculation 
does not modify the final result in terms of the Hamel basis. 

Now, every factor of the form [3~(13'~[3~) can be transformed into 

The usage of the reordering of parentheses using the r-associativity provides, 
according to (7.4), 

t tt ~ ( B ~ )  = ' " r~,~,AB~B,)B~ 

, ,d , , t j r , l tk~.  .~ .md+~vfa+E§  ~ t~ ~ 
t .  t .  t .  t a,~2,s A m a + e . k ~ _ j a + , 2 +  ~ 

~" c i  c ' J  c"k '~  fa+E+ev le~ 'eE  (8.4) 
Aial~+e AJetCe fa+~+e 

Hence, the usage of such reordering of parentheses does not modify the final 
result of the monomial in terms of the Hamel basis. 

Since every monomial can be constructed recursively from monomials 
of lower orders and since the usage of q-commutation factors or r-associative 
reordering of parentheses has no effect on the partial results, every monomial 
is determined in an unambiguous way in terms of the Hamel bases. Accord- 
ingly, the consistency to all orders is given by the validity of the conditions 
(7.3) and (7.4). �9 

The questions are now: 

�9 Which are sufficient conditions on the q- and r-applications in order 
to have nontrivial multiplication constants fulfilling (7.3) and (7.4). 9 

�9 Which could be a functional relation of the multiplication constants 
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q[y[,~[ = e~.(Xx~) 

ria ],iE],[C ] - -  e ~(;x~') . l (A'+~)x~} 

We first adopt 

X[a '+El  = . _ " , /2"  [A'+EI = e( l /2~-(a 'x~)e[_a '+El  
IX], 0~] (q[A],[E]) g[~],tY] o[e] , [a]  

Replacing this into (7.3), we conclude 

in terms of  the q- and r-applications in order to have conditions (7.3) 
and (7.4) satisfied? 

We consider first the case of an axial (I; q, r)-graded algebra, where 
the q- and r-applications are given by 

(8.5) 

(8.6)  

(8.7) 

tx+~q IX+El (8.8) 
g[xl, ts = gt~],[~'[ 

We assume now, using equation (4.14), with R,,,e : =  (ra, g-d,~y) ''1/4", 

gtX+E'[ = Rta.l,t~[p (ffl+~l = e(~).(Xx~)2 o [X+~'l 
[a'],r , rt~'],~l (8.9) 

Replacing the • in terms of  the p's in equation (7.4) and using (4.15), 
we obtain 

p tX+g+C], t~+e] = o [a'+Elo 9r+E+c'l (8.10) 
t~'l,~+6] v~1,r [ r[a'], g[ rta'+~'[, r 

A simple choice for the present case would be to take all the p constants 
equal to 1. This choice gives a general solution for axial graded algebras, 
provided adequate and fixed choices of  the phases in (8.7) and (8.9) are 
adopted. 

Analogously, for an iterative (I q, r)-graded algebra, the choice 

X I , + e  = / ~  x"l t2"o ,-,l~+e 
J#e  ~.*.l~,eJ "~,c-vjdce 

Djl~+~ = nl~+e 
# e  r kej~ 

pfa+e+eple+e = prna+epfa+~+e 
iat~+e j-eke iafj~ ma+#e 

(8.11) 

(8.12) 

(8.13) 

leads to the equations (7.3) and (7.4) for adequate and fixed choices of the 
phases of the roots in (8.11), (4.14), and (4.15). The p-factors are called 
branching constants and the conditions (8.12) and (8.13) [or (8.8) and (8.10)] 
are called the branching conditions. The conditions (4.14)-(4.15) [or (3.28)- 
(3.29)] of iterative group gradings are used to here to avoid the dependence 
of the branching constants on the q- and r-factors. 

For an (I; q, r)-graded algebra we have qa,a e { + 1, - 1 }. Since qa, a = 
- 1  implies nilpotency, we should adopt 
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pt~+e = (I + �89 (qe, e - 1)~jk~,e) pyt~4f (8.14) Jg, e 

We have then a recipe for constructing nontrivial iterative graded algebras: 

Proposition 3. The iterative (I q, r)-graded algebras over K are consistent 
to every order if the structure constants are given by (8.11) for fixed choices 
of phases of the roots that fulfill (4.14)-(4.15), and the branching constants 
fulfill equations (8.12)-(8.14). This follows from proposition 2 and the con- 
struction of structure constants above. 

Definition. We call {P; +,  o, .} a quasi-isomorphically (I q, r)-graded 
algebra over K iff: 

(i) There are vector spaces Pa, a ~ J C I, such that the whole P is 
generated through products �9 of the vectors in the Pa; a ~ J U {0} (or in 
the Pa, a ~ J tO J* to {0}, if P has involution). 

(ii) The set J is a minimal basis that generates the whole group I through 
group additions. 

(iii) Every Pa, a ~ I, is not trivial; i.e., Pa 4= {0}, a ~ I. 

Remark. An abelian-group ring is a trivial quasi-isomorphically graded 
algebra if its addition is restricted to elements proportional to the same group 
element and its ring is a field. 

Definition We call a group grading (I; q, r) over K consistent iff there 
exists a quasi-isomorphically (I; q, r)-graded algebra over K. 

9. EXAMPLES OF (I; q, r)-GRADED ALGEBRAS OVER C 

We list now several (I; q, r)-graded algebras over C which are of interest 
in mathematical physics. 

Example 3. We consider first the simplest Z2-graded algebra over C: 

bosonic basis {1}; St(l) = 0 ~ Z2 (9.1) 

fermionic basis {0 } St(O) = 1 ~ Z2 (9.2) 

p,Z2 : p ~  [.j p~ : {yl: y e C} U {y0: y ~ C} (9.3) 

This leads to a faithful, associative, commutative, iterative, quasi- 
isomorphically (7-2; q z2; r Z2)_graded algebra over C when the multiplication 
table in Table V is adopted. 

Proposition 4. (Zz; qZ2; rZ2) is a consistent group grading over C. This 
follows from p,Z2 being quasi-isomorphically graded. 

Observe also that due to symmetry of the multiplication table, Table V, 
p,z2 is commutative. 
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@ 

Table V. Multiplication Table 
of the Supergraded Algebra 

p'Z2 

1 0 

1 0 
0 0 

Example 4. Consider the set of parameters pz2 with Hamel basis: 

bosonic basis: {1, 0102}; St(l) = St(0102) = 0 ~ Z2 (9.4) 

fermionic basis: {0l, 02}; St(02) -- St(02) -- 1 ~ Z2 (9.5) 

PZ2 = P0 ~'J Pl  = {xl -]- y0102: X, y E C} I,.J {x01 + y02: x, y ~ C} 

(9.6) 

The algebra pZ2 is a faithful, associative, not commutative, iterative, and 
quasi-isomorphically (Z2; q z2; rZ2)_graded algebra over C when the multipli- 
cation table in Table VI is adopted. 

It is easy to extend the construction to have a quasi-isomorphically 
(7-,2; qZ2, rZ2)_graded algebras over C with involution. This is actually the 
underlying parameter structure of supersymmetry and superspace. 

Example 5. We introduce an efficient recipe for determining the structure 
constants of an axial grading instead of using the general recipe in (8.11)- 
(8.13). We consider the following set of parameters, whose indices build a 
minimal set that generates the whole group Z4A • Z4A: 

{e~ 0 ~ e(l,0), ec-O ~ e(0,1)} (9.7) 

We construct a (Z4A • Z4A; qZ4A• rZ4AXZ4A)-gradcd algebra over C 
generating the further basis elements in terms of those given in (9.7): 

1 
0102 
Ol 
02 

Table VL Multiplication Table of the SupergradedAigebra pza 

1 Oj 02 01 02 

1 0102 01 02 
0102 0 0 0 
01 0 0 0102 
02 0 -0102 0 
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e<.,,.> := (e(.,o#<o,m)) = ((e,,0))'(e<0.t))') (9.8) 

We obtain easily the multiplication constants in this case by observing that 

P.(n,m)~(n,,m,) = ((~(n,O)e(O,m))(e(n,,O)lE(O,m,)) 

r Z4AXZ4A / r  Z4A• ~ -  1~ Z4AXZ4A FZ4A•  
(n,m),(n',O),(O,m') t" (n,O),(O,m),(n',O) ! ~/(0,m),(n ' ,0)  (n,O),(n',O),(O,m) 

X ( r  Z4AxZ4A - 1  
" ((n+n') rood A,0),(0,m),(0,m') ) ( ~ ( ( n + n ' )  mod 4A,0)~(0 , (m+m ') rood 4A)) 

. . ( (n+n')  rood 4A,(m+m')  mod 4 A ) ~  
= A.(n,m),(n,,m, ) ~=((n+n') mod4A, (m+m' )  mod4A)  (9.9) 

Using the definitions (5.4)-(5.5), we obtain an equation for the multiplica- 
tion constants 

x ( ( n + n , )  mod 4A,(m+m') mod 4A) 
(n, m),(n', m') 

-i~r 
= e x p [ - ~ - -  {3nn'mm' 

q 
+ nn'(m 2 + m '2) + (n 2 + n'2)mm ' + ran'}] 

J 

(9.10) 

from which the q-commutativity and r-associativity conditions (7.3) and (7.4) 
can be verified. Using this choice for A = 1, we obtain the multiplication 
table in Table VII, Hence, the set 

T a b l e  V I l .  M u l t i p l i c a t i o n  T a b l e  o f  pZ4XZ~: (Z4  X Z4; qZ4XZ4, rZ~XZ4)_Graded A l g e b r a  

o v e r  C 

E@ 

f,# 

f,## 

f,#o 

e#. 

e#  

e# 

I 

~a ~a t ~a 2 E-u 3 E~o ~ ~2  %-3 ~eo ~et ~e2 ~e3 ~ 0  E~, ~ 2  E~3 

f'a 2 f'a 3 f'a f'a t --f,~.2 --f-# --f,ao --~.~i f,,~l f,,~o f,e3 e#  f,~.3 f,~.2 e~l f.eo 

e~3 f,a2 f,at f,a --~3 - - e#  --eet --f,eo ee 2 ee3 ee 0 ee, --e# --f,~o --f,# --%2 

f,~o e~,~ e#  f,p f,at ea f,a3 %2 %~ f,# - - e ~  - -e#  if,e' - i e e  - iee2 if,eO 

f,~t ~0  f,# f,# f'a f%t ea 2 ea 3 f,p %0 - e #  -e~,  -if,e2 if,eO ice, -if,e3 

f,~2 f,# eeo f'e' -f,a3 -f,a2 - f ' a '  -f',~ --e~2 -f,~, --f,p -f,,~ if,eo - ice2 - iee3 iee~ 
e#  f~2 f,# f,~o - f ' a  2 - f ' a  3 - f ' a  - e a t  - f , ~  - f , #  e~., ez2 --if-# ie# ieeO -if,e2 

eeo--f,e3 e~, -f'e~ -ie~* if,~3 if,# -ie~o %2 e~ -ea* - % 3  -f,~* -f,e2 e~o f,~ 

ee, -ee2 eeo -f,e3 ie~2 - i e ~  - ie~t  ie~.3 ea e #  - % 3  - c a ,  - e p  - e #  e~o %, 

f,e2 -e~,  ee3 -eeo  -ie~o ie~2 ie~3 - ie~,  ca, ea3 -ca2  - f , ;  e~2 ee, -f,e3 - % 0  

~e3 -eeo  ee2 - e  e, if,~ - i e ~  -if,~.o if,# %3 ea~ -f,~ - % 2  f,eo e~3 - f ' e '  -ee2 

f,~o e~2 - f , ~  -f,m, - ~  -ee2 f,eO ~3 if,# - i f , #  - i e #  i%o f,a3 -f ,#  ca2 --f ,#  

e~ e #  -e~t - ~ 3  ee2 eel -f,e3 -~eo ieeo - i e #  -if,a3 i~el - % 2  eal -ca3 f,,.~ 

f,# es4 - f , ~  -f,s-2 eeo f,~.3 - e  e, -ee2 - i e #  ie e, i e #  - iee2 f'a' -f-a 2 f'a -Ca3 
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P Z4AxZ4A = {Yea: Y ~ C and a e Z4A • Z4A} (9.11) 

with the multiplication constants (9.10) constitutes a faithful, not associative, 
not commutative, iterative, and quasi-isomophicaly (Z4A • Z4A; qZ4AXZ4A, 
rZ4AXZ4A)-graded algebra over C. 

Proposition 5. (Z4A X Z4A; q Z4AxZ4A, rZ4AXZ4A) is a consistent group 
grading over C. This follows from the fact that a quasi-isomorphically (Z4A 
• Z4A, q Z4AxZ4A, rZ4AXZ4A)-graded algebra P Z4AxZ4A can be constructed. 

It is easy to verify that the adopted multiplication constants fulfill (8.11)- 
(8.14) One realizes as well that the choices of phases in (8.11) for the square 
and quartic roots are all but trivial. 

Example 6. We consider again a set of parameters carrying indices of 

the group Z4A X Z4A: 

{r  ~ r ec "0 ~ eo, l} (9.12) 

We construct a (Z4A • Z4A; qZ4A• r(,Ull))_graded algebra over C in an 
analogous way as we did in (9.8)-(9.10) for Example 5 above. The multiplica- 
tion constants in this case become 

X ((n+n') mod 4A,(m+m') rood 4A) = e (-ilrl2A){mn, } (9.13) 
(n, m),(n', m') 

from which the q-commutativity and r-associativity conditions (7.3) and (7.4) 
can be verified. Using this choice of A = 1, we obtain the multiplication 
table given in Table VIII. Hence, the set 

P Z4AxZ4A = {yea: y E C and ti ~ Z4A X Z4A } (9.14) assoc 

with the multiplication constants in equations (9.13) constitutes a faithful, 
associative, not commutative, iterative, and quasi-isomophically (Z4A • 
Z4A, q 7-4AxZ4A, r<null))-graded algebra over C. 

Proposition 6. (Z4A • Z4A; q Z4AxZ4A, r(null)) is a consistent group grad- 
ing over C. This follows from the fact that a quasi-isomorphically (Z4A • 
Z4A; q Z4AXT-4A, rZ4AXZ4A)_graded algebra P~Z4Aoc xz4A can be constructed. 

Example 7. We can consider the direct product of the Z2-graded algebras 
and the Z4 • Z4-graded algebras. These direct products provide a wide family 
of parameters adequate for (I; q, r)-graded Lie algebraic extensions of the 
Poincar6 algebra in 3 + 1 space-time dimensions. According to Wills-Toro 
(1995), we assign the indices (0, 6), (o, til), (0, ti2), (0, a3), respectively, to 
the parameters t, x, y, z of the Minkowski space. The Poincar6 transformations 
use the same set of tilded indices as the spacetime coordinates. The Poincar6 
generators leave invariant the multiplets, so the horizontal spacings in Tables 
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Eat 

%2 
Ea3 

Ee0 

E~ 

r 

E~o 

ee2 

Ee3 

E~.o 

Egt 

E.~.2 

r 

Table Vlll. Multiplication Table of pZ~• X Z~; qZ~XZ4, r(,,,)).Graded Algebra 
over C. 

II 

E~ Eel Ea2 Eft 3 Ed0 I[dl E~-2 Ee 3 EeO Gel Ee2 e p  E,-O e.r E~2 Ep 

Eel Eat EaZ Ea3 E~o E~t E# E,r3 EeO Eel E~ Ec.3 E.r E.ct E# E.r 

E# % %3 %2 %t %0 E# %2 E# E# Eet Eeo E@ E# E~o %1 

Ea2 ea3 E# Eat - -Ee2- -Ee3- -Ego- -E# l  Eel Eeo Et-3 E~2 --Eg3 --E# - -E~l- -6 /0  

Ea3 Ea2 Eal E,~ - -E#  --E~2 - -E# --Eeo Ee2 ee3 Eeo Eel --ES, I --EsO --E~3 --E.r 

E~O E~l Ee2 Eg3 Ear E O Ea3 Ea2 Er E~2 EgO Er Eel E~ EE.2 E~0 

E~t Ee0 E# E~2 E~ Eat Ea2 Ea3 E~3 E.r E,# Egl e~ Eeo E# EC3 

E~2 E~ Ego Ee-I --Ea3 --Ea.3 --Eel --E/i E.f2 E.i,I E.r Eye0 - -~0  --Ee2 --Ee3 --Gel 
Ed,3 Ee2 E/d 6#0 --Ea2 --Eft3 - - 6  0 --Eal E~O Eg3 Egt E.r --Ee3 --Gel --Ee0 --E~2 

~go-Ee3 Eat -Ee  2 -iE.r iE~3 -iE.~2 iE~o (a 2 E a - E  a, -Ea3 i E e - t - i E # - i % 0  iE# 

Ee* --ee2 Eeo --Ee3 i,e~.2 --e,o ie~.* --iE~.3 f-a ea2 --Ca3 --Ca* -- ie~ i,eeo i%2 --Get 
Ee2--%* Ee3 --eeo iEd- - i e .#  ie.o--iezt  ea~ ~zi3--ca2 --E,~ - - ie#  i%l i%3--iEao 

%3--eeo Ee2 --Ee I --ies.3 iE# --iE~ iEt2 Ea3 %~ --GO--e,:~2 i e# - - i ( e3  --iEe~ iE# 

e~  --~.# E~ --E~t ieet--lee2 iEeo--ice3 e,~,, E# - - e# - -ego  --iE~ i% lea2--lear 

e Et - ~ p  E~ -E,,o - i E #  iEeo--ice2 iEe t E~2 %0--ee* - 6 #  ie,~ iea3-iEa~ iea2 

Eg2--EGO E~l - -Ef t3  i E # - i E e l  iEe3-iEeo r E~2.--6#--Egl --iE# i%t i%3 --iEa 

E: -Get E~o -e.,-2 -iEeo iEe3--iEe~ iE :  ep  e , : - -eeo  --EC.2 iea~--iEa2 --iE,,~ iEa~ 
i 

III, IV, VII, and VIII determine four classes of  multiplets. The Z2 factor 
determine, the commutativity (qa,a = 1) or anticommutativity (qa,a = - 1 )  
of a parameter with itself, and we call this behavior respectively self-bosonic 
and self-fermionic. The parameters associated with self-fermionic multiplets 
carrying indices of the sets {(1, a~): IX = 0, 1, 2, 3}, {(1, ~ ) :  IX = 0, 1, 2, 
3}, {(1, c'~): IX = 0, 1, 2, 3} and {(1, ~ ) :  Ix = 0, 1, 2, 3} are called, 
respectively, 0-class, 1-class, 2-class, and 3-class of  self-fermionic parameters. 
They resemble several features of  quarks. For instance, one can obtain a self- 
fermionic parameter of  the 0-class by a cubic product involving factors of  
each one of  the remaining three classes, in analogy to the composition of  a 
baryon fermion through a triple of  quarks of  different colors. This is the 
parameter counterpart of  the composition of  susy generators through the 
iterated Lie products of  three generators. This is the subject of a forthcoming 
paper on extended superspace (Wills-Toro, 1997). 

Notice that intricate Z2 • (Z4 • Z4)-graded algebras (with or without 
involution) might exist that cannot be written as direct products of  Z2- by 
Z4 • Z4-graded algebras. 

10. GROUP G R A D E D  OPERATOR A L G E B R A S  

To each parameter [3a ~ P of an (I; q, r,)-graded algebra over K we can 
associate an operator L~,  which means "left product by [3a." We can as well 
define an operator R~a, which means "right product by [3n": 
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L~n(~) := (~a~") (I0.I) 

R~a(~) := (~"~a) (10.2) 

The composition of applications LI~ a, and L~,~, is not necessarily equivalent 
to another application o f  the type Lw+ ~ unless the algebra is associative: 

' " ' " L [a"~ ra,~,a(~a~)~a ra,~,af~aa'~'as L~eL~,~(~) = ~a(~[3~)= = (10.3) 

L ~ L ~ , , ( f 3 ~ )  = f3~(f~'ffY;) = r~,,,~(f3d3'~)f3" = L r ~ , ~ , ~ ' , ( f 3 7 )  (10.4) 

Lra,~,af~ef~'~ 4= Lra,~,~afYe unless ra, e,u = re, e,e (10.5) 

We define a further binary composition "Q" of operators 

L~e Q) LI3, ~ = LI~e~, ~ (10.6) 

which satisfies 

Lt3a_L~, ~ ~s Lt~a Q) L~,~ unless associative parameters (10.7) 

Lf~ a Q Lf~,~ = qa,-eLf~'~ ~ Lfsa (10.8) 

L~a Q) (LI~' ~ (2) LI~" e) = ra,~,e(Lt~ a (2) Lt~' ~) Q) Lfre (10.9) 

In the case in which the parameter algebra is associative, we can interpret 
the parameter algebra itself as a linear category of multiplications from the 
left (or from the right). Remark: The question of constructing a time-evolution 
operator (whose composition with the observables provides time-translated 
observables fulfilling covariant algebraic relations) is guaranteed by the choice 
of the neutral index for the time parameters and for the time-translation 
generator. 

We will define objects called operators which generalize the above- 
introduced operators and their compositions. 

11. I-GRADED OPERATOR ALGEBRA OVER K 

Definition. We call {T; +, <>, .} an I-graded operator algebra over 
the f ield K iff T is a set whose elements are called operators, 0 ~ T, T --/: 
{0}, and {I; ^} is a group fulfilling the following three axioms: 

Axiom 1. There exists an application St that assigns an index of I to 
each element of T\{0}. The index set I is generated by the set St (T\{0}) 
through group operations. The subsets Ta of preimages of each a ~ I with 
the null element 0 ~ T build vector spaces over K: 
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St: T\{0} ~ I; Ya ~ S,(Ya) = a (11.1) 

I is generated by St(T\{0 }) (11.2) 

Ta = Sit(a) LI {0}; {Ta; +,  "} vector space over K (11.3) 

101 C T =  U Ta (11.4) 

Axiom 2. The product " 0 "  is a closed binary I-graded operation in T: 

0 :  T •  (Ya, Yg) ~ Yn<)Ye ~ T(closure) (11.5) 

Ta0 T~ C Ta,,~ (I-grading) (11.6) 

Axiom 3. The product " 0 "  is bilinear with respect to the operations 
defined in each vector space Ta C T, i.e., for all Ya, Y'~, Y~ ~ T, y e K: 

Ya 0 (Y~+ yY~) = Ya 0 Y~ + YYa 0 Y~ (11.7) 

(Y~ + yY~) (> Ya = Y~ 0 Ya + YY~ 0 Ya (11.8) 

We can define a Hamel basis for each nontrivial Ta C T, a ~ I: 

{Via} = {V/a: i = 1 . . . . .  dim Ta} Hamel basis for Ta r {0} 

(11.9) 

According to (11.6), we can write 

Via 0 Via = Ck.a.~*V~.. (11,10) 1OJ~ ,-aAe 

where, again, summation over repeated nontilded indices is assumed. The 
K-valued numbers Cite are called the structure constants of the I-graded 
operator algebra over K. Equations (11.10) constitute the multiplication table 
of T under the bases (11.9). 

Definition. Let {T; +, 0 ,  �9 } be an I-graded operator algebra over K. 
We call T: 
associative iff for all Ya, Y~, Y~, e T 

Ya 0 (Y~ 0 Y[~')=(Ya 0 Y;) 0 Ye '=Ya 0 Y~ 0 Y~ (11.11) 

with unit lo iff there exists a unique lo e To, 0 the neutral element of I, such 
that for all Ya E T 

Y~ <> lo = lo <> Y~ = Y~ (11.12) 

q-(anti)symmetric iff additionally (I; q, r) is a faithful iterative group grading 
over K and for all Ya, Y'e e T 
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Ya O V~ = (-)qa,,Y~ O Y~ (11.13) 

q-Jacobi (anti)associative iff (I;q, r) is a faithful associative iterative group 
grading over K and for all Ya, Y~, Y~, E T 

Ya O (Y~, 0 V~) = (Ya 0 Y~) 0 Y~ + (-)qa.W'~ 0 (Ya 0 Y~) 
(11.14) 

r-associative iff (I; q,r) is a faithful iterative group grading over K and for 
all Ya, Y~, Y~, ~ T 

Ya 0 (Y; 0 Y'~) = ra.~.e(Ya 0 Y ; )  <> Y" (11.15) 

(q, r)-Jacobi (anti)associative iff (I; q, r) is a faithful iterative group grading 
over K and for all Ya, Y', Y~, ~ T 

Y~ O (Y" 0 Y~) = r~,~,~(Y~ 0 Y') 0 Y" 

- -  1 t n +(-)ra,~,eqa,~r~,a,eu <> (u <> Ye) (11.16) 

In terms of the structure constants: 

�9 The associativity implies 

C fa^~^6 C m'~^~ : C la^~ C fa^~^~ (11.17) 
iam~^e Je~xe i~j~, l a ^ ~  

�9 The q-(anti)symmetry implies 

C k.a~,,~a, = ( - )qa, ~Cjk-~.~ a (11.18) 

�9 The q-Jacobi (anti)associativity implies 

c fa^~^ec l~^e  _~. cma^~c fa^g^e  .Jr- C - - ' ~  _("fa^~^#("na^e (11.19) 
ial~ad j~k~ iaj~ ma^gk~ t ) tt a, e ~ jena^e ~ iake 

�9 The r-associativity implies 

C fa^~^~ C I~^e : r C md^# f ' f~^ :  (11.20) 
ial~^e je4r e a,~,e ia#. " rna^e-ke 

�9 The (q, r)-Jacobi (anti)associativity implies 

cfâ#̂~Cl~̂Ci~l~̂~ j~k~ = rt~,&p cmâ~g"fd̂~̂~iaj# ~'mtI^~k# +(-)ra,~,eqa,~r~,~a, eCf~C~aa~ee 

(11.21) 

Observe that an (I; q, r)-graded algebra over K is just an I-graded 
operator algebra over K for which (I; q, r) is a group grading over K and 
whose product is q-symmetric and r-associative. 

12. MIXING PARAMETERS AND OPERATORS 

We want to introduce a particular requirement on the composition %" 
of {T; +,  o, �9 }, an I-graded operator algebra over K. We require that the set 
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Lp of left multiplications by parameters of  P, a faithful iterative (I; q, r)- 
graded parameter algebra over K, is in T: 

Lp = {LI3e: •a ~ P} C T (12.1) 

We require as well that the composition "o" restricted to Lp • Lp coincides 
with the composition "Q)" of left products defined in (10.6): 

~ = (Z)IL 2 (12.2) 

Finally, we require that the composition "o" between an operator and an 
element of Lp fulfills q-symmetry: 

L~a ~ Y~ = qa, eY~ ~ L~a for all L~a, Y~ ~ T (12.3) 

Definition. We call Lpa o T e a  linear hull iff it is the set of all finite 
linear combinations of elements of the form Lf~ a o yg E T:  

Lpe o T~ = {LI~I) o y~l) + ... + LI3~) o y~n): 

[3~0) . . . . .  [3~ ") ~ Pe and y~l) . . . . .  Y~") e T~} (12.4) 

Obviously, Lpa o T~ C TO,,~ and 

{Lp a o Te; +,  �9 } vector subspace over K of  Ta,,~ (12.5) 

We observe now that for & the neutral element of  I, the vector space is 
closed under the composition "o"; hence 

{To; +,  OlT~, "} algebra over K (12.6) 

The sets Lp_ a o TO, a ~ I, are vector subspaces of  To. Moreover, we can 
consider the set 

(Lp o T)a = K O Lp_,~ o TO = {Li3g) a o y(al) + ... + Li3e ~ o y(~,0: 
a e I  

13e)a . . . . .  139)~ e P and Y}~) . . . . .  Y~") e T} (12.7) 

Obviously, the set (Lp o T)  o C To and constitutes a vector space: 

{(Lp o T)a; +,  �9 } vector subspace over K of  To (12.8) 

We consider now sufficient conditions on a composit ion" 0 "  among operators 
in order to have (Lp o T)a an algebra over K. We assume for instance 
the requirement 

(L~_ e o Ya) 0 (L,~ o y~) 

-- |  t = r-, .-a,  er-e-e,e,~(L~_, (l) L~_ e) o (Ye 0 Y')  ~ (Lp o T)e (12.9) 
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It is easy verify that when (12.9) holds and " 0 "  is an internal operation in 
T, we have 

{(Lp o T)a; +,  O, �9 } algebra over K (12.10) 

We study now the constraints of the algebra (Lp o T)a in order to arrive at 
a relation to Lie algebras. 

13. GROUP GRADED LIE ALGEBRAIC STRUCTURES 

We want to construct now a particular subalgebra of the algebra { (Lp o T)o; 
+,  0 ,  �9 } considered in the previous section. In particular, we address the case 
in which the composition " 0 "  builds a Lie algebraic substructure that clearly 
delimits the mixture between elements of Lp and a set of operators L C T. 

We consider a subset (Lp o L)o of the algebra { (Lp o T)o; +,  0 , "  } such that 

L = LJ (La) C T (13.1) 

{La; +,  "} vector subspace over K of Ta, a E I (13.2) 

Let {s~; +,  [.,.],-} be a Lie algebra over K. Then for all X, Y, Z e ~ ,  ot ~ K, 

[s~; +,  .] vector space over K 

[.~, ~ ]  c ,~ 

IX + aY, Z] = [X, Z] + a[Y, Z] 

[X, Y] = -[Y, X] 

[X, [Y, Zl] = [[X, Y], Z] + [Y, [X, Zl]  

(13.3) 

(closure) (13.4) 

(linearity) (13.5) 

(antisymmetry) (13.6) 

(Jacobi associativity) (13.7) 

We ask now for sufficient requirements on the set L and P in order to have 
{Lp o L)o; +,  [', "], "} a Lie algebra over K, where 

[', "] = 0 I(LwL)2 (13.8) 

l[', "] = 0 1i~2 (13.9) 

Hence, the closure (13.4) follows from (12.9): 

[L~_ n o Ya, LI3"~ ~ Y;] 

- 1  = r-~,-a, ar-e-a,a,~ (La,_~_ a) ~ [Ya, Y']] ~ (Lp o L)o (13.10) 

The adoption of a commutator of the form (3.27) in (13.10) is allowed by 
the condition on the q- and r-factors in (3.24), which is satisfied by iterative 
group gradings. The linearity (13.5) follows from the linearity of the composi- 
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tion " ~ "  of the algebra {(Lp o T)o; +,  O, �9 } over K. The antisymmetry 
(13.6) implies 

[L~_ a o Y~ L~,_~ o Y~] = -[L~,_e o Y', L~_ a o y~] (13.11) 

This condition can be supplied by adopting [-, "11 to be a q-antisymmetric 
operation in L: 

[Ya, V;] = -qa,~ ~Y~, Ya] (13.12) 

From the Jacobi associativity requirement (13.7) together with the 
assumptions (12.2) and (13.10) and the conditions on the q- and r-factors in 
(3.26), which are satisfied by the faithful iterative group grading (I, q, r) 
over K, we obtain the (q, r)-Jacobi associativity of ~., .]: 

- - I  t + ra,,,eqa, er,.a,e [Y,, [[Ya, Y"]] (13.13) 

This construction leads to the definition of  the following structure: 

Definition. We call {L; +,  F, "],'} an (I, q, r)-graded Lie algebra over 
K iff 0 e L r {0], (I; q, r) is a faithful iterative group grading over K, and 
there is an application St: L\{0} --* I such that the following five axioms 
are fulfilled: 

Axiom 1. The application St assigns an index of I to each element of 
L\{0}. St(L\{0}) generates the whole group I. The sets La of preimages of  
each a e I with the null element 0 e L are vector spaces over K: 

St: L\{0} ----) I; Qa ~ St(Qa) = a (13.14) 

I is generated by St(L\{0}) (13.15) 

La = $71(~) t_J {0}; {La; +,  "} vector space over K (13.16) 

L = O (La) q: {01 (13.17) 
a e l  

Axiom 2. The product [., -~ is a closed binary I-graded operation in L: 

~., .]]: L X L --~ L; (Qa, Q ' )  "* ~Qa, Q ~  e L (13.18) 

HL~, Le] C La+e (13.19) 

Axiom 3. The product [., -]] bilinear with respect to the addition operation 
defined in each vector space La C L, i.e., for all Qa, Q'~, Q~, ~ L, y ~ K, 
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(13.20) 

(13.21) 

Axiom 4. The product ]', "] is q-antisymmetric, i.e., for all Q~, Q~ E L: 

]Qa, Q'~ = -qa.~Q~, Qa] (13.22) 

Axiom 5. The product ]', -] is (q, r)-Jacobi associative, i.e., for all 
aa, a~, a'e, E L: 

]Qa, ]a ' ,  Q'e~] = ra.~.e[~Qa, Q'~], Q'e'~ + ra.e, eqa.~r~la;e~Q'e, ]Qa, Q~]] 
(13.23) 

Observe that an (I; q, r)-graded Lie algebra over K is just an I-graded 
operator algebra over K for which (I; q, r) is a faithful iterative group grading 
over K, and whose product is q-antisymmetric and (q, r)-Jacobi associative. 

Proposition 7. If {L; + ,  ]-, "], "} is an (I; q, r)-graded Lie algebra over 
K and {P; +,  e, .} is a faithful iterative (I; q, r)-graded parameter algebra 
over K and (13.10) holds, then (Lp o L)o is a Lie algebra over K. This follows 
from the construction above. 

The Lie group whose Lie algebra is (Lp o L)o has elements of the form 
(2.3) in which we replaced the operator "multiplication from the left by a 
parameter" by the parameter itself. This structure generalizes the concept of 
symmetry transformations and invariance and was the aim of this study. 

Definition. {L; +,  ~-, "], �9 } is called an (I; q, r)-graded Lie algebra over 
K with involution iff the following extra axiom is fulfilled. 

Axiom 6. There exist involutions (-)*, (-)*, and (~  in I, K, and L 
respectively, such that (I; q, r) is a group grading with involution, and 

(yaa) = y*Qa* (13.24) 

(]Qa, Q'])  = ]Q~*, Qa*] (13.25) 

Observe that the q-commutator defined by 

]Qa, Q'] = Qa o Q'e - qa, eQ" o Qa (13.26) 

provides a model for the "]', .]"-product of  the (I; q, r)-graded Lie algebras 
as long as the "~ is r-associative. 



2996 Wills-Tom 

14. CONCLUSIONS 

The construction above has settled a structure of a continuous group of 
transformations which involve noncommutative and nonassociative parame- 
ters. It has determined the corresponding graded parameter algebra and graded 
Lie algebraic structure. An appropriate superspace formalism has been made 
possible, The novel structures might allow for a better understanding of the 
Lie groups and their relation thorough graded extensions, and suggest a tool 
for involving discrete transformations in a Lie algebraic language. 

The definition of graded Lie algebras with involution provides a powerful 
realm for building generalized external symmetries beyond supersymmetry. 
The presented examples of graded algebras of parameters are the basis for 
an extended superspace. This line of research might lead, on the one hand, 
to a better understanding of the relation among the internal and external 
symmetries of the phenomenological models, and on the other hand, it might 
lead to models of local external symmetry that offer better understanding of 
the connection between gravity and quantum physics. 
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